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1. Executive Summary

Advanced semiconductor field-effect transistors (FET), scaled into the sub-10-nm gate length
range, are sometimes considered the main candidates for future nanoelectronics even beyond
the long-term horizon of the International Technology Roadmap for Semiconductors. In this
project, long-term prospects of FET scaling have been evaluated in more detail than before. In
particular, we have calculated the source-drain I-V curves, subthreshold characteristics, voltage
gain, and power consumption of sub-10-nm double-gate silicon MOSFETs using the self-
consistent solution of quasi-2D Schrodinger and 2D Poisson equations. Most importantly, the
sensitivity of transistor characteristics (in particular, the gate voltage threshold) to variations of
the structure dimensions, have been evaluated in detail. The results has shown that this
sensitivity, strongly affecting the fabrication facilities costs, sets the ultimate limits for CMOS
technology scaling. Based on our results, this limit is close to 10 nm gate length for single-gate
and 8 nm for double-gate transistors. The further continuation of the Moore Law development of
microelectronics will probably require transfer to integrated circuits based on CMOS/nanodevice
hybrids.

2. Model

Figure 1 shows our models for the two versions of SOl MOSFETs. In both transistor options, the
gate is assumed to be aligned with the undoped section of the SO channel that is connected to
bulk source and drain via their thin, doped extensions. In the sub-10-nm gate length range,
channel doping is unnecessary [2, 3]. Estimates show [8] that this allows us to neglect electron
scattering in the undoped part of the channel. On the other hand, the doping of source and drain
(including their thin extensions) should be extremely high (ND > 1020 cm-O) to ensure device
reproducibility [4, 7, 8].

(a)

source gate drain
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source drain
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Figure 1. The models of (a) single-gate and (b) double-gate nanoscale SOl MOSFETs, used in
this study. All the results shown below have been calculated for the doped extension length Lext =
10 nm, and the electrode doping level ND = 3x10 20 cm-3. (While the former parameter does not
affect results too much, the choice of the latter one in the sub-10-nm range of L is not too broad
[4]).

In the single-gate version of the device (Fig. 1a), the ground electrode is extended under almost

the entire extension region, and its electric potential is equal to that of the source. On the other
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hand, in the double-gate transistor (Fig. lb) the back gate is electrically connected to the front
gate, and has the same length L. These geometries is typical for most methods of SOl MOSFET
fabrication.

In this size range, a full quantum-mechanical treatment of electron transfer, in particular of the
electron confinement in the direction across the ultrathin channel, and the source-to-drain
tunneling in the direction along the channel, is a must. Indeed, the latter effect provides one of the
major limitations for transistor scaling [4, 8, 9]. Another major effect is a gradual loss of
electrostatic control of the channel potential as the gate length L is decreased. Just as in Refs. 7,
8, we address these problems by the self-consistent solution of the quasi-2D Schr0dinger
equation and 2D Poisson equation. (We have shown [8] that this approach gives results similar to
those of the more fashionable NEGF formalism.)

3. Main Results
A. Potential Profile

Figure 2 shows typical distributions of the conduction band edge along the transistor
length (partly including thin extensions of the source and drain). Since the two MOSFET species
under analysis are depleted at different gate voltages VG, we have plotted them for approximately
the same value of the drain current to provide a more fair comparison.
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Figure 2, Effective potential profile for: (a, c) single-gate and (b) double-gate MOSFETs with
gate length L = 7,5 nm for the same drain current, Panels (a) and (b) show the results of change
of the drain-source voltage, while panels (c) and (d) illustrate the effect of gate voltage variation,
The origin of coordinate x (along the transistor length) is at the interface between the doped



source extension and undoped channel (of the same thickness t). Transistor parameters are
shown at the panels. (Here and below tox is the gate oxide thicknesses.)

One can see that the potential profiles in both cases are very similar, with the exception that the
sensitivity of the potential peak (that essentially controls the drain current) to gate voltage is
approximately twice stronger for the double-gate transistor. For negative V. (depleting the
channel) this is expected. In the single-gate device the electrostatic potential changes almost
linearly between the gate and the ground electrodes, with half V. being in the center of the
channel. In the double-gate transistor, the potential is approximately constant in the direction
across the channel. However, we had not expected that the same relation would hold even in the
case of positive V0., when electrons in the channel screen the gate potential substantially.

B. Source-Drain I-V Curves

Figure 3 shows typical families of I-V curves for both transistors. In both cases, the
reduction of the gate length in the single-gate transistors leads to an almost similar suppression
of current saturation at larger drain-source voltages. (For the used values of t and tox, this
deterioration is due to, in almost equal parts, to the electrostatics degradation and the onset of
source-to-drain tunneling [8, 91.) Again, the main difference between the two MOSFET species is
that it takes (approximately) twice more gate voltage to change the current in the single-gate
transistor by a certain amount, than in its double-gate counterpart.
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Figure 3. Source-drain I-V curves of (a, c) single-gate and (b, d) double-gate transistors with
channel length (a, b) L = 10 nm and (c, d) L = 5 nm, for several values of the gate voltage Vg.
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C. Subthreshold Curves

The same effect can be seen in Fig. 4 showing typical subthreshold curves of both
devices. Even in relatively long single-gate devices, the slope is at least twice less than the
perfect value of 60 mV/decade.
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Figure 4. Subthreshold curves of (a, c) single-gate and (b, d) double-gate transistors with
channel length (a, b) L = 10 nm and (c, d) L = 5 nm, for ten values of the drain-source voltage in
each case (with 50-mV steps). The dashed lines show the perfect slope (-60 mV/decade).

D. Voltage Gain

The degradation of the gate control of both ON and OFF currents can be characterized by a
single parameter, voltage gain, i.e. the partial derivative Gv=- VlaVg taken at a fixed drain current
density. In good MOSFETs, Gv -+ oo at saturation, so this is not a very popular engineering
figure-of-merit. However, as the transistor degrades, the voltage gain becomes an important
characteristic, since digital logic circuits fundamentally require Gv > 1 for their operation. Figure 5
shows Gv as a function of the drain current, at fixed source-drain voltage. (Just as in the case of
potential profiles, this comparison is more fair than it would be if the gain were plotted against the
gate voltage VG.) One can see that again, in single-gate transistors the gain is always
approximately half that of the double-gate transistor. This is why when Gv falls with decreasing L
due to device degradation, the device usefulness boundary (Gv = 1) is reached by the single-gate
transistor first (at L - 3 nm), while the double-gate device can provide gain even at L = 2 nm.
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Figure 5. Voltage gain Gv =_ aVDslaVg I = s as a function of drain current density, for several
values of gate length.

E. Power

Well before the MOSFETs are scaled down to the gain loss point, they acquire two features
unfavorable for applications. The first one is a growth of power, even at optimally selected gate
workfunction and power supply voltage V0D (which in CMOS circuits also gives the signal swing).
In order to analyze this effect we have used a simple model for the total power in CMOS circuits
[10] (it is also described in detail in Ref. 8). Although that model is approximate, we believe it
captures the basic interplay between the static and dynamic power. The main advantage of the
model is that after gate workfunction optimization, the specific power (per unit channel width)
depends on just three parameters: the power supply voltage VDD, ON current density JON, and a
"switching activity parameter" X, typically of the order of 102. (The results are insensitive to X,
unless this parameter is impracticably large.)

Figure 6 shows the total power and its components as functions of VDD, for a typical values of ,A
and JON [1]. Static power decreases with VDD, because larger voltage swing allows enables the
transistors to be closed better in the depletion region (Fig. 4). On the other hand, dynamic power
grows with VDO (in the normalization used in Fig. 6, linearly). As a result, total power as a
function of VDD has a minimum [8-10].

When carrying out this procedure for the single-gate MOSFETs, we have run into the following
new problem. If such a transistor is small enough, power optimization brings us to values of the
signal swing so large that when the transistor is nominally closed (Vg = 0, VDS = VDD), the valence
band edge at some internal point of the channel becomes higher than the conduction band edge
in the drain (Fig. 6b), even taking into account the bandgap broadening due to quantum
confinement. In channels so short, this band overlap immediately leads to intensive Zener
tunneling [11] from internal points of the channel to drain, forming holes in the channel near its
interface with the source (see the arrow in the inset of Fig. 6b).
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Figure 6. Total power, and its static and dynamic components, as functions of the source-drain
voltage for (a) L = 8 nm and (b) L = 4 nm. The insets show the band edge diagram for (a) VDS =

0.9 volt and (b) VDS = 1.52 volt. Dashed lines show the point of minimum power without the
account for the Zener effect (Pmi), and the point where this effect starts (Pzeer).

This loss may be only compensated by electron-hole recombination in the channel. Though this
effect is unaccounted for in our theory, estimates show it is far insufficient to compensate the
Zener tunneling, so that a positively-charged "pocket" of holes would appear inside the channel,
lowering the electrostatic potential and preventing the device from shutting down.
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In order to account for this effect, we have set an upper bound on V0D, limiting it by the point of
band edge crossing (i.e., the Zener tunneling onset). This immediately has resulted is an
increase of the total power minimum. Figure 7 shows the resulting minimum power as a function
of transistor length, for several values of ON current, corresponding to long-term ITRS goals [1].
One can see that in the single-gate transistors the Zener tunneling effect begins at L _ 6 nm,
while in double-gate devices it is not essential in all the gate length of interest (thus justifying our
previous results [7, 8]).

F. Parameter Sensitivity

Another scaling effect, which may have even larger negative practical impact than the power
growth, is the exponentially growing sensitivity of transistor characteristics (most importantly, the
threshold value Vt of gate voltage) to minute variations of device dimensions [4, 8, 9]. Figure 8
shows the threshold voltage "roll-off" (i.e., the difference I V(L) - V0oo) I, as a function of gate
length. The results show that for the single-gate transistors this "sensitivity crisis" starts two
nanometers or so earlier than in their double-gate counterparts.

4. Conclusions

Our calculations have shown that single-gate SOI MOSFETs differ from double-gate SOl devices
(with similar parameters) by twice weaker control of the current by the gate voltage. It is
interesting that this relation of the two devices, evident in the depletion range, is also extended,
almost exactly, over the ON state range.
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By itself, this transconductance (and hence gain) loss might be not very detrimental, taking into
account the simpler fabrication technology and also the fact that the internal logic delay of two
transistors is comparable (due to the twice larger input capacitance of double-gate transistors).
However, single-gate geometry exacerbates two main fundamental problems of the "ultimate"
(sub-1 0-nm) MOSFET scaling: the exponential growth of power consumption and sensitivity to
fabrication uncertainties. These factors will play the decisive role in for eventual transfer of the
CMOL industry to double-gate SOl devices and then to CMOS/nanodevice hybrids [4, 11].

- t= 2 rnm

o......... t= 1.4nm

S...

0) "",Nr.V ,,, •

=10 nm ..

t =1.5nm ..

"o V= 0.5V V

0.1 -4J =1 0lA/cm.e on D
41)

I-
I * I * I,

4 6 8 10

Channel Length L (nm)

Figure 8. Threshold voltage roll-off as a function of the gate length, for two values of the channel

thickness.

4. Conclusions

Our calculations have shown that single-gate SOl MOSFETs differ from double-gate SOl devices
(with similar parameters) by twice weaker control of the current by the gate voltage. It is
interesting that this relation of the two devices, evident in the depletion range, is also extended,
almost exactly, over the ON state range.

By itself, this transconductance (and hence gain) loss might be not very detrimental, taking into
account the simpler fabrication technology and also the fact that the internal logic delay of two
transistors is comparable (due to the twice larger input capacitance of double-gate transistors).
However, single-gate geometry exacerbates two main fundamental problems of the 'ultimate"
(sub-10-nm) MOSFET scaling: the exponential growth of power consumption and sensitivity to
fabrication uncertainties. These factors will play the decisive role in for eventual transfer of the
CMOL industry to double-gate SOl devices and then to CMOS/nanodevice hybrids [4, 11].

5. Result Publication

The main results of this study have been published in Ref. 12.

6. Possible Further Work



We see an opportunity to improve our results in two directions:

(i) As pointed recently by V. Trividi and J. Fossum [13], single-gate transistor performance may
be improved by making the back gate oxide (BOX) thicker than the front gate oxide. We could
readily incorporate this idea into our model and explore scaling limits for this case.

(ii) As follows from our preliminary results [8, 9] , some further improvement of the double-gate
MOSFETs may be achieve by the elimination of thin source and drain extensions (Fig. 1), i.e.,
by transfer to "bulk" electrodes. A quantitative analysis of ultimate scaling of these devices would
require using a real 2D Schr6dinger equation instead of the quasi-2D equation used earlier.

We would be ready to consider suggestions of funding which would make this work possible.
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